
A Microprogramming Support routines more compactly than evcn the best optimizing
compilers; complexity becomes an issue only in longer

Architectures routines where humans have a less clear-cut advantage.

Steven Molnar and Mark C. Surles Microcoding by hand, however, is tedious and error-prone.
The microprogrammer must contend with low-level details

Department of Computer Science not encountered in high-level languages, making code
University of North Carolina development significantly slower and more expensive.

Chapel Hill, NC 27599 Many of these details are intrinsic to the goal of
optimization, such as the selection of opcodes and the

Abstract scheduling of instructions. Other details, however, are
--. describea software tool to aid the development of irrelevant to the task of writing optimal code: allocating

microcode for horizontal, pipelined architectures. The tool variables to registers, checking for latency errors (an
is a preprocessor for microcode source *hat allows the insidious problem in pipelined architectures), and writing
programmer full flexibility to optimize code, but removes many copies of similar pieces of code for procedure calls,
many of the tedious and error-prone aspects of micro- input/output, etc.
programming. It automatically allocates floating-point
registers, expands complex instructions, and analyzes code This paper describes an approach ilsed by the authors to
for pipeline-related errors, speed microcode development on parallel, pipelined
- - -;-, ;machine by providing the programmer the flexibility to
We- have written a working version of the tool for the optimize, yet shielding him from irrelevant details. Our
Weitek XL-8032 floating-point chip set, a horizontal effort culminated in the design and implementation of a tool

C architecture with pipelined sequencer and floating-point called MAXL to aid in microprogramming the Weitek XL-
datapaths. Although the tool was designed for the XL 8032 floating point chip set. The tool was used to code

00 architecture, the algorithms used are applicable to other portions of a real-ti 3-D graphics system. Since the
parallelpipelined architectures. Weitek XL is typical a large class of VLSI processors,

the techniques described here can be used to write similar
This paper argues for the existence of such tools, tools for other machines.< summarizes the algorithms needed to analyze control and
data flow in the presence of pipelining, and characterizes the II. THE WEITEK XL-8032
tool's performance based on nine microcoded routines
written for a real-time 3-D graphics system. " The Weitek XL-8032 chip set [10] is a horizontally-

microcoded, pipelined architecture. It is composed of three
I. INTRODUCTION separate processors: a sequencer, an integer, and a floating-

point processor, all sharing the same 64-bit instruction
To achieve higher performances, many of today's VLSI word. Both the sequencer and floating-point processors are
architectures have resorted to instruction and datapath pipelined: the sequencer by one cycle, and the floating-
pipelining and wide instruction woros. Such architectures point processor by four cycles (this pipelining is variable
offer many MIPs and MFLOPs, but require intricately under certain conditions). The chip set contains 32 integer
structured code to utilize them. Many of these processors registers, 32 floating-point registers, and three temporary
have had high-level language compilers written for them, floating-point registers. Instructions following a branch
often employing sophisticated optimization techniques. (branch shadows) may be executed or not, depending on
Even so, compilers seldom produce code that uses the full run-time conditions.
instruction width on every cycle. To do so requires that the
code be compacted, a difficult process in which code is M. SUPPORTING TIlE MICROPROGRAMMER
analyzed for potential parallelism and transformed so that
compatible instructions execute together, at the same time Based on our experience writing microcode for the 'eitek
ensuring that the original semantics of the algorithm are XL, we decided that the support tool MAXL should have
preserved [9]. the following features:
Several impressive techniques for approximating optimal * Input should be at the microcode source level. An
codeer compresionve echniqueorappd rntly [ oua intermediate or high-level language might make_,code compaction have appeared recently [6,7], though programming easier, but would restrict the programmer's
programming by hand with microcode still attains the best a mize ode.

• ability to optimize code.,€
performance. Human microprogrammers have access to * MAXL should automatically allocate floating poin
higher-level information about an algorithm than does a registers. Existing code often used 60 or more floating
compiler; a human can redesign portions of an algorithm to point variables that were hand-allocated into the 32 "
aid compaction, while a compiler must adhere to the floating-point registers. Using MAXL, the programmerlI
original semantics. As a result, humans can code short could define and use symbolic variable names hat would rL TL
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automatically be assigned to registers. MAXL would not A more complete description of the algorithms is contained
generate loads and stores to save registers. Instead, it would in (4].
provide warning messages to the user identifying where
allocation was unsuccessful. We assumed the user could do Syntactic and Semantic Analysis. This phase
a better job of fixing this than our program. parses input and builds a parse tree using the Interface

- MAXL need not allocate integer registers; in our Description Language (IDL) Toolkit [8]. It evaluates

experience there has always been a sufficient number of semantic attributes, such as jump addresses and variable

these. references. It extracts instruction-dependent information
needed in later phases, such as the number and types of

• MAXL should accept a superset of Weitek's arguments. Finally, it determines the conditions under
microcode language. Meta instructions for declaring which instructions execute, including the run-time
automatic register variables and specifying procedure calls conditional execution of branch shadow instructions.
and debug print statements would be used to supplement
Weitek's microcode language. Control Flow Analysis. This phase propagates

- MAXL should work within single subroutines only. control flow information (line adjacencies and branch
Most code needing to be microcoded can be isolated to a pointers) to take sequencer pipelining into account. The
single subroutine. To handle multiple routines would first step is to connect all sequentially adjacent statements
increase the complexity of the tool without greatly by pointers, except for instructions one and two cycles after
increasing its effectiveness, an unconditional branch. Next, it adds branch pointers to

- MAXL should check for as many semantic errors as branch shadow instructions, connecting them to the branch
possible. Of particular importance would be tests for target instruction. Control flow analysis results in a
latency violations and unreachable code. directed graph representing all possible runtime paths

- MAXL should be fast enough to be pan of the normal within the program.
program development loop, rather than being considered a
"verifier," to be used only occasionally. livedead(instr: instruction;

Live in: Set of variables)

IV. IMPLEMenTiNG MAXL begin
(compute new set of live variables}

To automatically allocate floating-point registers and Livenew *-- (instr.Live U Live_in U
identify semantic errors, MAXL must analyze the semantic instr .RHS) - instr. LES;

structure of the code. Much literature has been written on
analyzing a program's control flow and variable usage (I], before and no change, end recursion
but most of it assumes that results become available if instr.visited AND
immediately after operations are performed (no pipelining). instr.Live = Live-new then
In designing MAXL, we used the algorithms and return
techniques in the literature as a starting point, but modified endif;
them and developed new ones for use in a pipelined domain.
MAXL is composed of several phases, each abstracting instr.visited -- True;
additional information from the raw microcode source until instr. Live - Livenew;

conventional register allocation techniques can be used.
Figure 1 illustrates the phases within MAXL. (propagate live variables upward)

foreach path upward in ctrl flow craph
live dead(path.instr, Live-new)

Syntactic/ Control Variable end

Source Semantic Flow Lifetime end;~~~~~Analys i IAayi IAay's AFigure 2. Recursive routine to compute

variable lifetimes

PVariable Lifetime Analysis. This phase computes
A o Relie Sorc the set of variables, termed live, whose values must beE -as a,,oi=,on c retained during each instruction. Optimizing compilers

typically do this using data-flow equations (1]. These are
solved for transitive closure by repeatwdly applying the

Figure 1. Phases within MAXL equations to each instruction in the order of control-flow,
beginning at a routine's entry-point. Since we are

The following sections describe each of the phases, giving restricting our analysis to single subroutines, it is more
particular attention to the phases that handle pipelining. appropriate to begin at the routine's exit point. A recursive
Only a summary of the algorithms will be prcsented here. ascent routine computes variable lifetimes. To implement
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this routine we define two additional fields for each doubtless, has its own peculiarities. The tool could also be
instruction: a boolean flag visited (initialized to incorporated into the backend of a high-level-language
False), and the current set of live variables live compiler to perform register allocation after parallelizing
(initialized to (] at each instruction). Figure 2 presents the and code generation.
recursive ascent algorithm livedead.
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